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Abstract: Van der Waals is one of the most distinguished men in thermodynamics and author of an equation of 
state that has become the basis of all modern equations of state and theories of mixtures. Here we give a 
description of his life and his scientific and academic achievements. The van der Waals equation of state is 
discussed in detail with the goal of understanding the reasons for its inadequacy to give a quantitative prediction 
of the behavior of a real gas. 

Johannes Diderik van der Waals (Figure 1) was born on 
November 23, 1837, in Leiden, the Netherlands, the son of 
Jacobus van der Waals and Elisabeth van den Burg. He was 
the eldest son in a family with eight children. After finishing 
his elementary education, he studied to become an elementary 
school teacher, and between 1856 and 1861 he was employed 
as such. Van der Waals finished his high school education 
without learning Greek and Latin and thus was not allowed to 
take science degree examinations at Leiden University. 
Nevertheless, he enrolled as a free student and continued 
studying mathematics, physics, and astronomy at the 
University during 1862–1865, ultimately obtaining teaching 
certificates in mathematics and physics. Between 1864 and 
1866 he taught at a secondary school in Deventer and after that 
at La Hague, where eventually he became the principal of one 
the local schools. Finally, after the Dutch authorities removed 
the requirement that science students be proficient in classic 
languages, van der Waals was able to sit for university 
examinations and obtain, in 1873, his doctoral degree [1, 2]. In 
his thesis, entitled “Over de continuïteit van de gas- en 
vloeistoftoestand” (“On the continuity of the gas and liquid 
state”), he developed his famous equation of state and the 
theory that there is no basic difference between the liquid and 
gas states, so that below the critical temperature there is a 
continuous transition from one state to the other. His equation 
of state corrected the ideal gas law by considering that 
molecules have volume and that there are forces of attraction 
among them. Today, these forces are known as van der Waals 
forces. 

In 1876, new higher-education legislation related to the 
Dutch University system promoted the Athenaeum Illustre of 
Amsterdam to university status, and in 1877 van der Waals 
was appointed its first Professor of Physics. Eventually other 
famous Dutch physicists such as W. H. Julius, Pieter Zeeman 
(Nobel Prize in Physics, 1902), and R. Sissingh joined the staff 
and expanded the research activity in physics. Together with 
other professors such as Jacobus van’t Hoff (1852–1911; first 
Nobel Prize in Chemistry, 1901) and the geneticist Hugo de 
Vries (1848–1935), they contributed to the fame of the 
university. During his tenure at the University of Amsterdam 
(1877-1901), he collaborated actively with Kamerlingh-Onnes 
(1853–1926; Nobel Prize in Physics, 1913) at the University of 
Leiden on his research on cryogenic fluids, liquefaction of 
gases, and development of the virial equation of state. A 

memorial at the Laboratory of Physics of the University of 
Amsterdam lists Van der Waals’ important scientific 
achievements [1]. 

The scientific achievements of van der Waals were 
acknowledged in the Netherlands and all over the world, and 
numerous institutions granted him honors and distinctions. He 
was a member of The Dutch Royal Academy of Science 
(1875–1895), he received an honorary doctorate from the 
University of Cambridge; he was made an honorary member of 
the Imperial Society of Naturalists of Moscow, the Royal Irish 
Academy, and the American Philosophical Society; a 
corresponding member of the Institut de France and the Royal 
Academy of Sciences of Berlin; an associate member of the 
Royal Academy of Sciences of Belgium; and foreign member 
of the Chemical Society of London, the National Academy of 
Sciences (USA), and of the Accademia dei Licei of Rome. A 
particularly significant honor was his being appointed one of 
only twelve foreign members of the Académie des Sciences in 
Paris. 

In 1865, van der Waals married Anna Magdalena Smit, who 
died early; he never married again. They had three daughters 
and one son. The daughters were Anne Madeleine, who ran the 
house and looked after her father, Jacqueline Elisabeth, who 
was a teacher of history and a well-known poetess, and 
Johanna Diderica, who was a teacher of English. The son, 
Johannes Diderik Jr., was Professor of Physics at Groningen 
University between 1903 and 1908, and subsequently 
succeeded his father in the Physics Chair of the University of 
Amsterdam. 

Van der Waals died in Amsterdam on March 8, 1923, at the 
age of 85. Professor Went, chairman of the Koninklijke 
Academie van Wetenschappen (Dutch Royal Academy of 
Science) wrote in his memorial address: “With the decease of 
J. D. van der Waals the Netherlands has lost one of its great 
sons; natural science lost one of her most honorable 
practitioners.” 

The Scientific Work of van der Waals 

Besides his famous equation of state, van der Waals made 
several fundamental contributions to the science of 
thermodynamics. He was keenly interested in the experiments 
done by Thomas Andrews, who, in 1869, had found that gases 
had a critical temperature and could be liquefied. In 1890 he 
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Figure 1. Picture of van der Waals (right) and K. Onnes (left). Onnes 
is sitting at the liquefier in which the first liquid helium was produced. 

published his epoch-making paper “Theory of Binary 
Solutions,” where he developed graphical representations of 
his mathematical development of the liquefaction phenomena 
in the form of a thermodynamic surface that he called “Psi-
surface,” in honor of J. W. Gibbs, who had chosen the Greek 
letter psi to designate the function that eventually would be 
called the Gibbs energy function (G). Van der Waals applied 
his Principle of Corresponding States to mixtures by assuming 
that a mixture behaves like a single fluid. This approach played 
an important role in the interpretation of phase diagrams and 
critical lines, and was adopted also by Kamerlingh-Onnes and 
van Laar. Numerous papers published on the subject gave 
origin eventually to his Textbook of Thermodynamics (Leipzig, 
1912), co-authored with Ph. Kohnstamm. A thorough 
computer analysis of the capability of the van der Waals 
equation of state to describe the actual behavior of mixtures 
has been made by van Konynenburg and Scott [3]. They have 
concluded that one can distinguish among six main types of 
fluid phase behavior, which have been found experimentally. 
With the exception of Type 6, the equation of van der Waals, 
in spite of its oversimplifications, is capable of predicting the 
existence of all the other five types. Mention should also be 
made of van der Waals’ thermodynamic theory of capillarity, 
which in its basic form first appeared in 1893 [4]. Van der 
Waals questioned the analysis of Laplace and Gauss, who 
assumed the phenomena to be strictly in the domain of statics. 
According to van der Waals, the theory of the nature of heat 
assumes that the molecules are in rapid movement everywhere, 
not only in the bulk of the fluid but also in the boundary layer. 
Thus the phenomenon must be analyzed on the basis of 
thermodynamics using the concepts of dynamic equilibrium. 
Gibbs had previously analyzed the phenomenon assuming a 
sudden transition of the density of the fluid into that of the 
vapor, while van der Waals claimed the existence of a gradual, 
though very rapid, change of density at the boundary layer 
between liquid and vapor. Eventually, experiments concerning 
the phenomena near the critical temperature favored van der 

Waals’ ideas. Surface tension is intimately related to the 
metastable and unstable fluid phases, and to the P–V–T 
equation that describes these states. In 1893, van der Waals 
showed that the temperature dependence of surface tension, 
σ, could be predicted by the expression 
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where the index r indicates a reduced property (see below), 
and σ0 is a reference value of the surface tension whose value 
van der Waals showed could be derived from molecular 
properties. Van der Waals used his equation of state in 
equation (1) and reduced it (without the use of a computer!) to 
the approximate expression, valid in the vicinity of the critical 
point 
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The exponent 1.5 is quite close to the actual experimental 
values, which range from 1.28 to 1.29. 

The van der Waals Equation of State 

Many applications of thermodynamics are concerned with 
the behavior of fluids, mainly gases. Thermodynamic 
properties, such as the internal energy and enthalpy from 
which one calculates the heat and work requirements of 
industrial processes are not readily measurable. They can, 
however, be calculated from volumetric data using an 
appropriate equation of state (EOS), Φ(P,V,T). While the EOS 
primarily describes the properties of the gas phase, many 
modern equations are also useful for the prediction of the 
liquid phase of the substance. 

Consider first an ideal gas. It is conceived as a collection of 
a very large number of individual molecules that do not exert 
forces upon each other (except by elastic collisions) and which 
are so small that they can be treated as if they were point-
masses of no volume. This picture is adequate to describe the 
behavior of real gases only at very low pressures. To obtain a 
more realistic model, it is conventional to introduce 
corrections that account for the facts that molecules must have 
finite volumes and they must exert attractive forces (van der 
Waals forces) upon each other at sufficiently small distances. 
In each mole of gas there is a space of volume (V–b) available 
for free motion that is somewhat less than the total volume. 
The term b is the excluded volume of the particles per mole. 
The excluded volume is also representative of the forces of 
attraction present among molecules. These forces induce a 
volume larger than the actual volume of the molecules, 
because in their movement they do not truly touch one another. 
Van der Waals starts his analysis by considering that 
molecules in the bulk of a gas are attracted equally in all 
directions by the surrounding molecules, but this is not the 
case of molecules next to the wall of the container. These 
molecules experience a net inward force and thus they are 
decelerated when traveling in the direction of the wall. If we 
recall that the kinetic theory of gases postulates that pressure is 
the number of collisions per unit area and per unit time, this 
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inward force results in fewer molecules hitting the wall, that is, 
the pressure observed in a real gas must be smaller than that 
present in an ideal gas. The reduction in pressure will be 
proportional to the number of molecules per unit volume 
(N0/V) in the layer next to the wall, and to the number of 
molecules per unit volume in the next layer, which are 
attracting. Therefore, the reduction in pressure is 
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where P' is the pressure calculated from simple kinetic theory 
(called the internal pressure of the gas) and V is the molar 
volume. Taking both corrections into account leads to the 
well-known van der Waals equation of state. 
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The terms a and b, characteristic of each gas, are termed the 
van der Waals constants. Their values can be obtained by 
applying equation (5) to the critical point; at the critical point 
the first and second derivatives of pressure with respect to 
volume are zero. The result is 
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where zc is the compressibility (= PV/RT) at the critical point. 
Calculation of the values of a and b for different gases shows 
that a is of the order 106 atm(mL•mol)-2 and b ranges between 
20 and 60 mL/mol, that is, the values of b are very similar to 
that of the saturated liquid molar volumes at atmospheric 
pressure and about 10,000 times smaller that those of a. 
Although the van der Waals equation can only be justified 
theoretically for small deviations from ideal behavior, it 
nevertheless represents qualitatively, and in a remarkable way, 
the behavior of the real gas over the whole range of gas, vapor, 
and liquid. It does not give the numerical details correctly, yet 
it never leads to physical nonsense, it is a relatively simple 
equation, and it is widely used to illustrate the general 
behavior of nonideal gases. 

Let us analyze some of the limitations of the van der Waals 
EOS: 

According to equation (9), the critical compressibility 
should be a universal constant for all gases, a conclusion 

negated by experience (see Table 1). From this table we learn 
that although zc is not constant, the majority of gases do have a 
critical compressibility around 0.27. In addition, van der 
Waals’ zc = 0.375 is well above the observed range. 
Nevertheless, and to the credit of van der Waals, it must said 
that very powerful EOS, such as those of Soave and Peng–
Robinson, also present the same limitation of predicting a 
constant value for zc, 0.333 for the Soave and 0.307 for the 
Peng–Robinson EOS. 

In general, the equation is a poor quantitative predictor of 
the P–V–T behavior of the gas, particularly at high pressure. 
This results can be easily explained if we write the equation in 
a virial form. We have 
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Multiplying each side by V/RT we get 
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In general, the term b/V will be very small compared to 
unity; we can use this fact to expand the first term in equation 
(11) as a convergent geometric series: 
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Replacing in equation (11) and rearranging in terms of powers 
of 1/V 
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Equation (13) is the virial form of the van der Waals 
equation. From it we get 
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 2
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where BVW, CVW, and DVW are the second, third, and fourth 
virial coefficients. Equations (14) to (16) explain why the van 
der Waals equation is not very accurate. According to the virial 
theory, all virial coefficients are functions of temperature. In 
the case of van der Waals, only the second virial coefficient is 
so. In addition, equation (14) indicates that the second virial 
coefficient varies linearly with the reciprocal of T, which is 
contrary to theory and experience, as illustrated in Figure 2, for 
oxygen. This figure shows that although BVW depends on 
temperature, the functionality is not appropriate, meaning that 
even at low pressures (B-truncated) the van der Waals equation 
cannot be expected to be accurate. 
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Figure 2. Comparison of the second virial coefficient, as predicted by 
the van der Waals equation of state and experimental data [6]. 

The second virial coefficient for every gas is zero at the 
Boyle temperature, TB. For a van der Waals gas 

 B

a
T

bR
=  (17) 

Writing equation (17) in the reduced form and using 
equations (6) to (8) yields 
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The experimental results indicate that for real gases ( )B r
T  is 

approximately 2.5 [5]. 
Consider one of the TdS equations [5] 
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Applying the condition that equation (19) is a perfect 
differential, we get 
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Integrating between ideal gas behavior (V = ∞ , marked *) 
and real gas behavior (V = V) yields 
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Now, the van der Waals EOS predicts that the pressure 
varies linearly with the temperature [equation (10)], therefore 

 ( ) ( )*, ,V VC V T C V T−  (22) 

In other words, for a van der Waals gas, the heat capacity at 
constant volume is independent of the volume, a result that 
contradicts the experimental evidence. 

Equation (22) can be used to develop a macroscopic 
interpretation of the term a/V2. To do so we start from the 
Maxwell relations and the TdS equations for one mole of 
gas [5] 
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Applying equations (10) and (12) and integrating between 
the real gas state (U, V) and the ideal gas (U

*
, V = ∞ ) we get 
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In other words, the term a/V2 can be interpreted as the residual 
internal energy of the gas. 

Comparing equation (5) with the EOS for an ideal gas 
points out that writing an EOS for a real gas has exacted a 
heavy price: The universality of the equation is lost and use of 
the new equation requires identifying the gas. Van der Waals 
realized that the reason for this drawback was that a real gas 
can be liquefied, and that the liquefaction phenomenon occurs 
at P–T–V conditions that are different for each gas. To recover 
the original advantage, van der Waals came out in 1880 with 
the idea of expressing the behavior of a gas on the basis of 
reduced properties, Xr, obtained by the linear scaling Xr = X/Xc. 
The reduced property is then the ratio between the value of the 
actual property and the value of the property at the critical 
state. He proceeded to replace X by XrXc obtaining 
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Finally, replacing the values of the critical properties given by 
equations (6) through (9) yields 
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Equation 24, when represented in the (Pr, Tr, Vr) surface is a 
universal relation that carries no identification of the gas and 
expresses the Principle of Corresponding States: gases at the 
same reduced conditions display the same behavior. It should 
be recognized that the Principle of Corresponding States is 
only a translation of the EOS from the P = (T, V) surface to the 
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Figure 3. Maxwell theorem. 

Table 1. Range of values of the critical compressibility factor 

Zc representative compounds 

0.147 sulfuric acid 
0.211 acetic acid 
0.224 methanol 
0.229 water, acetone 
0.24 to 0.26 ammonia, esters, alcohols, phenol 
0.26 to 0.28 60% of compounds, mostly hydrocarbons, CCl4 
0.28 to 0.30 O2, N2, CO, H2S, CH4, C2H6, Ar, Ne, CHCl3 
0.321 methylamine 

 
Pr =(Tr, Vr) one. It does not improve the fitting quality of the 
EOS, but does makes it universal. The reduced EOS is subject 
to the condition that at low pressures the gas behaves ideally, 
so that the number of adjustable parameters is two. From the 
microscopic viewpoint it can be shown that the Principle of 
Corresponding States applies to substances in which the 
molecules are spherically symmetrical and for which the 
potential energy curve for interaction between molecules is of 
universal shape. Since no sharp distinction can be made 
between substances that do and those that do not conform to 
the Principle of Corresponding States, such a differentiation 
must be made about the properties to which it applies. It 
applies to properties that depend only on the intermolecular 
energy. The principle therefore applies to the second virial 
coefficient and does not apply to the heat capacity. 

Consider now the EOS written in the form Z = PV/RT. 
Changing the variables to the reduced ones yields 

 r c r c c c r r r r
c

r c c r r

P PV V PV PT PT
Z Z

RT T RT V V
= = =  (25) 

According to equation (25), the Principle would be correct if 
all gases had the same critical compressibility, as predicted by 
the van der Waals EOS. We have seen already that this 
prediction is not justified by experiment (Table 1). In other 
words, two parameters are not enough to generalize the 
behavior of real gases. Modern EOS are based on a modified 
expression of the Principle: gases that have the same values of 
the reduced properties and the same value of a third parameter 
(such as the acentric factor, the critical compressibility, the 
radius of gyration, etc.) behave in the same manner. It is of 
interest to note that the Principle of Corresponding States 
served as a guide during the experiments that ultimately led to 
the liquefaction of hydrogen by J. Dewar in 1898 and of 
helium by H. Kamerlingh-Onnes in 1908 (1913 Nobel Prize 
for his low-temperature studies and his production of liquid 
helium). 

The van der Waals equation is a cubic equation in the 
volume. If we plot it in the P–V plane we get the graph shown 
in Figure 3 and learn the following: 

(a) For a given pressure and for all isotherms T > Tc, only 
one root is real while for T < Tc the three roots V1, V2, and V3, 
are real. 

(b) The van der Waals equation is analytical in nature, and 
at temperatures below the critical it predicts a continuous 
passage from one phase to the other, contrary to experience. 
(Recall the provocative title of van der Waals’ Ph.D. thesis!) 
Root V1 represents the saturated liquid, and root V3 the 
saturated dry vapor; for section A-2-B where the intermediate 

root V2 lies, we have 0
T

P

V

∂  > ∂ 
, which contradicts the 

experimental evidence with stable systems. The two-phase 
isotherm can be used to illustrate the so-called Maxwell 
Principle (true for every EOS that shows the behavior 
illustrated in Figure 1). Let us assume a cyclic machine that 
operates according to the path 1-A-2-B-3-1. In the forward 
stage it goes 1-A-2-B-3 and in the return stage it goes 3-2-1. 
Applying the First Law to a closed system, neglecting kinetic 
and potential effects, we have 

 0Q W U− = ∆ =∑ ∑  

 Q W=∑ ∑  

consonant for cyclic processes of similar nature. But in our 
particular situation ΣQ, the total thermal effect, is zero because 
in the forward stage we add heat as heat of vaporization and in 
the return stage we withdraw it as heat of condensation. Hence 

 0W =∑  

Since 
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and 

 ( )123 3 1W P V V= −  (27) 
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to have ΣW = 0 requires that areas 1-A-2 and 2-B-3 be equal 
(Maxwell’s Principle). 

What is the practical implication of Maxwell’s principle? 
Any EOS that presents the van der Waals loop can be used to 
predict the saturation dome (where both the liquid and vapor 
phases are present) as follows: 

1) Assume T < Tc, 
2) Draw the pertinent isotherm on the P-V plane, 
3) Find the value of the pressure (graphically or otherwise) 

that splits the 1-A-2-B-3 curve into equal parts, 
4) Repeat for a new value of T < Tc. 

Each step (b) determines the values of the specific volume 
of the saturated liquid and saturated vapor at the pertinent 
pressure. 

The Maxwell principle illustrates another brilliant 
contribution of van der Waals: the same EOS can be used to 
represent both the gas and liquid state. 

A very interesting feature of the equation is that a Carnot 
cycle operating with a van der Waals gas has exactly the same 
thermal efficiency (expression) as the cycle operating with the 
ideal gas, as will be shown now. Let us assume a Carnot cycle 
that operates between the temperature levels TH and TC, where 
the expansion stage occurs between states 1 and 2, and the 
compression stage between states 3 and 4. Stages 2–3 and 4–1 
are reversible and adiabatic (isentropic). Integration of 
equation (19) for any reversible process between states i and f 
yields 
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Assuming that the heat capacity *
VC  of the ideal gas varies 

with the temperature, as follows 
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yields, after some algebra 
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For an isentropic process we get, after some algebra 
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where F(T) is a known function of the temperature. Consider 
now the isentropic processes 2–3 and 4–1 that take place 
between the two heat sources of Carnot’s cycle, TH, and TC. 
Applying equation (32) to each of them we get 
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Dividing equations (33) and (34) yields 
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Now, let us apply the First Law to stage 1–2, neglecting 
kinetic and potential energy effects and assuming that the only 
work interactions are compression and expansion. We have 

 
2

1

V

H

V

Q PdV U= + ∆∫  (36) 

where QH is the heat absorbed. Using equations (10) and (22). 
and integrating and rearranging, yields 

 2

1 2 1 2 1

lnH H

V b a a a a
Q RT

V b V V V V

     −= + − − −     −     
 (37) 

 2

1

lnH H

V b
Q RT

V b

 −=  − 
 (38) 

A similar relation can be written for QC, the heat rejected in 
stage 3–4, 

 3

4

lnC C

V b
Q RT

V b

 −=  − 
 (39) 

The thermal efficiency of the cycle (van der Waals) is 

 1 1C C

H H

Q T
h

Q T
= − = −  (40) 

exactly the same as that for an ideal gas operating between the 
same temperatures. The observant reader will say (and be 
correct) that this is not a surprising result because the 
efficiency of a reversible Carnot cycle is independent of the 
structure of the engine and the material (gas) used for 
operating it. 

Before closing the description of the van der Waals 
equation, we recall that for a gas mixture, the constants a and b 
must be calculated using the following mixing rules 

( )2

i i i j i j i j ija y a y y a a y y a= = =∑ ∑∑ ∑∑  (41) 

 i ib y b= ∑  (42) 

An adequate epilogue to the scientific work of van der 
Waals is the closing remarks of the Presentation Speech by the 
Rector General of National Antiquities, Professor 0. 
Montelius, President of the Royal Swedish Academy of 
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Sciences, on the occasion of presenting to van der Waals the 
1910 Nobel Prize in Physics: 

“Professor van der Waals. The Royal Academy of 
Sciences has awarded you this year’s Nobel Prize for 
Physics in recognition of your pioneering studies on the 
physical state of liquids and gases. Hamurabi’s and 
Moses’ laws are old and of great importance. The laws of 
Nature are older still and even more important. They apply 
not just to certain regions on this Earth, but to the whole 
world. However, they are difficult to interpret. You, 
Professor, have succeeded in deciphering a few 
paragraphs of these laws. You will now receive the Nobel 
Prize, the highest reward that our Academy can give you.” 

Conclusion 

After Carnot, Clapeyron, and Clausius, van der Waals is 
probably the scientist who has had the most profound 
influence in the development of thermodynamics. His 
contributions to the study of phase behavior of pure 

compounds and their mixtures, in particular of gases, have set 
the basis for all modern theories on the subject. 
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